报告人:美国杜克大学 Jing-Sheng (Jeannette) Song教授
时间:2021年10月13日(周三)上午9:00-10:30
腾讯会议号: 515 288 836
报告内容简介:
We consider a grocery retailer selling a perishable product in a dynamic environment where consumers’ price sensitivity changes at unknown times (due to pandemics, weather events, etc.), and the product perishes at an unknown rate. We design online price experiments for learning about these unknown features over time. We then prescribe how to use the newly gained knowledge and the most up-to-date data to make informed joint pricing and inventory ordering decisions. Depending on whether the demand shock distribution is parametric or nonparametric, we design two versions of the data-driven pricing and ordering (DDPO) algorithm with the best achievable performance guarantee. Implementing our algorithm on a real-life data set from a supermarket chain, we show that our data-driven, learning-and-earning approach significantly outperforms the historical decisions of the supermarket chain by reducing the profit loss due to uncertainty by over 80%. In particular, avoiding active learning for price-sensitivity changes leads to an annual profit loss of over 62 million U.S. dollars; avoiding active learning for perishability results in a yearly profit loss of over 11 million U.S. dollars. (Joint work with Bora Keskin and Yuexing Li of Duke University.)
报告人简介:
Jing-Sheng Song博士为美国杜克大学富卡商学院 R. David Thomas讲席教授。长期致力于供应链管理与运营战略领域的研究,研究方向包括库存和物流系统规划与设计、3D打印、动态定价、全球供应链风险管理和社会责任; 在国际主流期刊上发表学术论文70余篇,包括运作管理领域顶级期刊Management Science、Operations Research、Production and Operations Management 、Manufacturing & Service Operations Management。Jing-Sheng Song教授为教育部长江讲座教授、中国自然科学基金委海外杰出青年、INFORMS Fellow、MSOM Fellow; 目前担任Management Science和Service Science部门主编、曾担任Operations Research 区域主编和IIE Transactions部门主编。
(承办:管理科学与物流系、科研与学术交流中心)